Многоугао – увод

Многоугао је фигура у равни коју чини многоугаона линија и унутрашња област одређена том линијом. Други назив је полигон.

Ако сва темена многоугла леже у једној равни, многоугао се назива раван многоугао. То је многоугао у ужем смислу. Ако сва темена многоугла не леже у једној равни, многоугао се назива просторни многоугао. Дужи које чине многоугаону линију називају се странице многоугла. Темена изломљене линије, крајеви страница, називају се темена многоугла. Према броју темена многоугао је троугао, четвороугао, петоугао, шестоугао… Често се уместо многоугла каже и n-троугао (чита се ентоугао). Странице многоугла које имају заједничко теме су суседне, а које немају заједничких тачка су несуседне. Ако је многоугао хомеоморфан кружници, он се назива прост многоугао. Другим речима, прост многоугао је многоугао без самопресека, тј. када:

  1. из сваког његовог темена исходе само две странице;
  2. странице немају заједничких тачака (темена не припадају страницама);
  3. темена не леже на страницама.

У елементарној геометрији се најчешће посматрају прости многоуглови. Многоугао се дефинише и као део равни ограничен изломљеном линијом. Многоугао се назива конвексним (испупченим) ако цео лежи са једне стране сваке праве на којој лежи његова страница. Другим речима, многоугао је конвексан ако дуж која спаја сваке две његове тачке, цела (свим својим тачкама) припада том многоуглу. Збир унутрашњих углова сваког простог многоугла је (n-2)180°, где је n = 3, 4, 5,… број његових страница.Примери многоугловаXII10

 

Advertisements

Оставите одговор

Попуните детаље испод или притисните на иконицу да бисте се пријавили:

WordPress.com лого

Коментаришет користећи свој WordPress.com налог. Одјавите се / Промени )

Слика на Твитеру

Коментаришет користећи свој Twitter налог. Одјавите се / Промени )

Фејсбукова фотографија

Коментаришет користећи свој Facebook налог. Одјавите се / Промени )

Google+ photo

Коментаришет користећи свој Google+ налог. Одјавите се / Промени )

Повезивање са %s